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Beh et Sarikaya, Vassilios Koukoulidis and Gregor V Bochmann* develop 
a technique for self-consistency analysis of complex protocol/service specifications 

Formal specifications are the basis for automated verifi- 
cation and implementation in communication software. 
The paper gives a method of dynamic analysis for modular 
specifications which is based on symbolic execution and 
reachability analysis. Symbolic execution is a technique for 
static analysis and applied first to the specification. It is 
effective in detecting syntactic and semantic errors. A form 
of reachability analysis, called limited reachability, is used 
to dynamically analyse the intermodule communication. It 
has two applications: combining modules and detecting 
any errors in intermodule communication. The technique 
is first applied to the specifications in a nondeterministic 
finite-state machine model and then applied to an 
extended finite-state machine model for which two 
standard formal description languages exist. 
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Formal specification of communication systems is 
considered to be of prime importance in both software 
and hardware development. This is because formal 
specifications are not ambiguous and they describe the 
system precisely, as opposed to natural language specifi- 
cations which often suffer from being ambiguous and 
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imprecise. It is also possible to base the automated 
system verification and implementation on formal 
specifications. 

An area in which formal specifications are finding 
widespread use is communication protocols for Open 
Systems Interconnection (OSI). Formal techniques are 
being used for the specification of the proposed protocols, 
and the development and testing of the new protocol 
implementations. Three FDTs are presently being used: 
Estelle 12, Lotos 15, and SDL 23. Estelle is based on a finite- 
state machine model extended by Pascal data structures, 
expressions and statements for the description of inter- 
action parameters, additional state variables and related 
processing. Lotos is based on a calculus of communicating 
systems extended with a formalism for abstract data 
types. SDL is also based on an extended finite-state 
machine model. At present, SDL is more widely used due 
to its graphical syntax called SDL-GR. 

Formal specifications of standardized protocols and 
services are being developed to be used as reference or as 
specifications complementary to the traditional reference 
specifications given in natural language. Since all sub- 
sequent phases depend on the formal specification, 
validation of formal specifications is of prime importance. 

Validation of specifications can be classified into two 
activities: validation of self-consistency and validation of 
consistency with another specification. In both cases, the 
validation could be based on static analysis or dynamic 
analysis. Static analysis looks for syntactic and semantic 
errors in the specification without considering an execution 
of the specification. Dynamic analysis looks for system 
deadlocks, unspecified receptions and other problems 
arising from the dynamic behaviour of the specified 
system 5. 
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In this paper a method is described for self-consistency 
validation of specifications written in an extended finite- 
state machine model. The basic techniques used are 
symbolic execution, a well-known method used in 
analysis of sequential programs 1° and reachability 
analysis 24'13, a well-known technique used in protocol 
verification for protocols specified as finite-state machines. 
Two techniques are then used to dynamically analyse 
modular specifications. 

The paper is organized as follows: we first introduce 
the limited reachability analysis, a reachability analysis 
with the consideration of the queues of length one. An 
algorithm is given for limited reachability analysis of 
modular specifications in which modules are specified in 
a nondeterministic finite-state machine model. The 
symbolic execution of formal specifications in an extended 
FSM model is then discussed, and then extended to the 
limited reachability analysis to this model. 

REACHABILITY ANALYSIS FOR 
COMMUNICATING FSMs 

Reachability analysis 

Reachability analysis is a technique often used to analyse 
the dynamic behaviour of multiprocess systems defined 
as a collection of interacting finite state machines (FSMs). 
Traditionally, models of directly interacting FSMs g'17 as 
well as models involving FSMs communicating through 
(unlimited) FIFO queues 18'24 have been considered. In 
order to partly reduce the state space explosion involved 
with a straightforward exploration of all attainable global 
states of the system, the concept of 'reduced' reachability 
has been proposed 18'25. In general, there remains the 
possibility of unlimited build-up of messages in the 
queues, which makes the general validation problem 
undecidable. In many restricted cases, however, many 
validation problems can be decided even in the case of 
unlimited queue lengths TM. 

The application of this technique for protocol vali- 
dation usually implies the analysis of a system, as shown in 
Figure 1 a, of two interacting protocol entities (PEs). Only 
the protocol data units (PDUs) exchanged between the 
two entities are considered. For a complete protocol 
validation, based on a protocol specification also involving 
the interactions with the service users, a configuration as 
shown in Figure 1 b must be considered. In addition, it is 
shown in this paper that the specification of a single 
protocol entity is partitioned into several communicating 
FSMs. This corresponds to typical specifications written in 
FSM-oriented FDTs, such as Estelle or SDL, which typically 
contain several (sometimes dynamically created) inter- 
acting processes (see, for instance, Reference 4). 

Reachability analysis for embedded systems 

Consider the case of a system consisting of a large number 
of communicating FSMs; interest lies in validating the 
interactions between FSMs belonging to a certain sub- 
system, independently of the other parts of the system. 
An example is the validation of the specification of a 
protocol entity given as a collection of interacting FSMs, as 
shown in Figure 2, or two adjacent protocol entities within 
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Figure 2. Modular system structure (a) and its combined 
representation (b) 

a given host computer. If teachability analysis is considered 
for such an embedded (sub)system, independently of the 
other system components, one will not be able to detect 
errors which relate to the interactions between the 
subsystem and the other parts of the system, e.g. the same 
information is not obtained as in the case of traditional 
protocol reachability analysis which considers the inter- 
actions with the peer entity; however, one will still be able 
to validate those aspects of the specification which relate 
to the interactions among the FSMs wi th in  the same 
subsystem. 

The traditional work on reachability analysis uses a FSM 
formalism with what are called 'simple' transitions, that is, 
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each transition is either an input transition, i.e. a transition 
forwhich an input is defined and no output is specified, or 
a spontaneous transition, i.e. a transition for which no 
input is defined and an output is specified. In the case of 
directly interacting FSM (i.e. rendezvous), the reachability 
analysis reduces to the construction of a coupled product 
of the interacting machines, as explained in Reference 17. 
The result of the teachability analysis is called in the 
following simply the 'product machine'. In the case of 
direct interaction, the product machine is again finite. In 
the case of FSMs interacting through queues, the product 
machine is not necessarily finite, unless the size of the 
queues is artificially limited. 

The initially obtained product machine contains in 
general a certain number of transitions which involve the 
input/output between the interacting machines. These 
interactions are not visible from the environment of the 
analysed subsystem and can be considered spontaneous 
transitions without output to the environment. A straight- 
forward simplification of the product machine can be 
performed in order to obtain an equivalent machine 
without such spontaneous transitions. 

Limited reaehability analysis 

In the following a more general FSM model is considered, 
corresponding to the FDT's Estelle and SDL, where a 
single transition (for input or spontaneous) may involve 
one or more outputs. These FDTs use queued communi- 
cation between the FSMs. 

A reachability analysis is considered which assumes 
direct interaction between the machines, which is called 
'limited reachability analysis'. An investigation is carried 
out in the following into what extent limited reachability 
analysis can be considered complete, that is, what kind of 
errors are not detected by such analysis and could be 
detected by reachability analysis taking into account 
message queueing. 

Figure 2a depicts an example specification containing 
two modules: AP connected to the environment with the 
channel TS, and Map connected to the environment with 
the channel NS. In Figure 2b the product machine, called 
TP, is shown with the internal interaction point eliminated. 
AP and Map are interconnected with the channel PDU. 
Map FSM is shown in Figure 3 and AP FSM in Figure 4wi th 
the state 'closed' represented twice to increase readability. 
This system models a transport protocol (TP) organized in 
two modules: an abstract protocol (AP) module handling 
protocol operations and a mapping (Map) module to map 
the transport protocol interactions to the network and 
vice versa. 

In what follows, the notation for input/output: 

channel.interaction (parameters) or 
interaction(parameters if any) 

is used for internal channels (PDU in Figure 2) and external 
channels (TS and NS in Figure 2), respectively. Interaction 
is the name of the input/output which may have one or 
more parameters. Note that a textual syntax can be used 
to express the transitions in the FSMs using four different 
clauses: when, from, to and output. As an example, the 
transition in Figure 3 from the 'closed' state can be written 
as follows: 

when PDU.transfer__CR 

PDU terminated PDU.trartsf~ CR/ NDi~o~c ~¢q 

NDATAind_CR/PDU.Uar~fer C R 
NDATAind_CCIPDU.~fer_CC 
NDATAind_DT/PDU.tram fe~DT 
NDATAind_I~2/PDU J~Lrd fer_DC 
NDATAind_DR/PD U.~ms fer_DR 
NDATAind_AKJPD U.tr ~ fm AK 

Figure 3. Map machine 

from closed to open__inprogress 
output NS. NConnectreq. 

Firstly, a simple example is given and then an algorithm for 
limited reachability sketched. Consider the following 
transition from Figure 4: 

when TS.TCONreq 
from closed to wait for~CC 

output PDU.transfer__CR 

This transition when fired (upon the input TCONreq from 
the channel TS) places the interaction called transfer__CR 
into the queue. A corresponding transition from Map is 
immediately considered that consumes this input: 

when PDU.transfer__CR 
from closed to open__inprogress 

output NS.NConnectreq. 

PDU u~f~ CP, ffCONind 

TCONreq]PDU u~fer CR 

PDU =~f~ DR/TEISind~ 
PDU ~ma~d 

TCONresp/PDU ~ fer CC 
PDU.u~ fe r  CCHCON :ord / /  PDU .u~ fer CC:TDISind, 

PDU ~fer DR 

PDU ~fer Al~lnull ~ / TDATA~cOjPDU.~ f~ 
null/PDU~a~fer AK ~ PDU U~sfer_DT/TDATAmd 
PDU readyhaull PDU ~fer_DT/nuU 
null/READY U READYAauI] 

PDU u~f~ DR/ nu tllTDiSin~Up ~ ~ R ~ D R  TDISmd,PDU tt~sfer DC TDISreqJPDU tr~sfe~ D 

Figure 4. AP machine 
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Thus, the combined behaviour of the two modules can 
be expressed as a transition: 

when TS.TCON req 
from (closed,closed) to (wait__for___CC, 

open_ inp rog ress )  
output TS.NConnectreq 

which corresponds to the case that after AP places 
transfer___CR into the queue, transfer__CR is consumed 
by Map, which in turn produces an output to the NS 
channel• 

Algor i thm for l imited reachabi l i ty  

An algorithm is presented to analyse modular specifi- 
cations with each module specified as a FSM. The 
algorithm contains three steps of processing. 

First, all transitions which take input from external 
channels or spontaneous transitions are considered• If 
they produce an output to the internal channel, then these 
transitions are combined with the transitions in the other 
module which consume this output. This constitutes the 
first part of the Step 1 of the algorithm• 

Next, the transitions combined in Step I are considered• 
The combined transitions that generate output to the 
internal channels need to be processed. These transitions 
are combined with the corresponding transitions that 
consume the output, completely eliminating the 
communication in the internal channel. This constitutes 
the second part of the Step 1 and corresponds to the case 
of double handshaking between the modules. 

In Step 2, the transitions that neither take input nor 
produce output to the internal channels are considered 
next. These transitions generate more than one transition 
in the final product machine, i.e. one for each state value 
of the other FSM. 

Since not all the state pairs occur in the product 
machine, the algorithm generates a combined transition 
for all reachable state pairs. Then null transitions (input 
and output are null) could also be eliminated• These 
actions constitute Step 3 of the algorithm listed in the 
Appendix. The algorithm is repeatedly applied to other 
channels interconnecting the FSMs (if any). 

Error cases are not considered in the above algorithm, 
but they could easily be added so that the algorithm 
generates a list of erroneous cases in the combined 
behaviour. The types of errors that can be detected by the 
algorithm are: 

• unspecified receptions, when there exists no transition 
for an output, 

• handshaking loops, when for example, FSM 1 generates, 
upon input A the output B to the internal channel and 
FSM2 generates, upon input B the output A to the 
internal channel, 
deadlocks, when the product machine goes to a state 
with no outgoing transitions and the global state is not 
composed of the final states of the individual FSMs (if 
any). 

• For systems with more than two modules, it is straight- 
forward to obtain the product machine by first combining 
any two interconnected modules and then combining the 
product machine with a third interconnected module, 
and so on. 

I m p l e m e n t a t i o n  

The above algorithm has been implemented on a 
workstation in Prolog. The program takes an Estelle 
specification of the embedded system in which the 
interconnected modules can be described as FSMs as 
input and produces another Estelle specification with 
modules combined• Description of FSMs in Estelle form is 
straightforward 6. The user provides the names of the input 
file and.the names of the modules to be combined• The 
program finds the channel name over which these 
modules communicate from the IP (interaction point) 
definitions of the modules and then follows the algorithm 
to generate combined transitions. 

Example 

It is shown how the implementation above analyses the 
combined behaviour of by way of the FSMs of Figures 3 
and 4. The input Estelle specification looks like; 

specification example systemprocess; 
channel PDU__c (user, provider); 

by user: terminated; transfer~AK; . .•  ; ready; 
by provider: terminated; transfer__AK; •.• ; 
transfer_DT; 

channel TS(user, provider); 
by user: TCONreq; . . .  ; U_READY; 
by provider: TCONind; . .  • ; READY; 

channel NS(user, provider); 
by user: NGONNECTind; • . .  ; NDATAind__DT; 
by provider: NCONNECTreq;.. • ; NDATAreq__DT; 

• . .  (*module header definitions for the englobing 
module and its two submodules*) 

. . .  (*rename the channel PDU_c as PDU in the ip 
definitions*) 

• .. (*body definition for the FSM of Figure 3*) 
. . .  (*body definition for the FSM of Figure 4*) 
modvar AP:A; MAP:M; 
initialize 

begin 
init AP with AA; init MAP with MM; 
connect AP.PDU to MAP.PDU 

end(*of initialize*) 
end; (*of body*) 
end. (*of specification*) 

An example processing in Step 1 is combining 
when NS.NDATAind_DR 
from open to open 

output PDU.transfer__DR 

in Figure 3 with 

when PDU.transfer__DR 
from open to closing 

output TS.TDISind 
output PDU.transfer__DC 

In Figure 4 to obtain: 

when NS.N DATAind_DR 
from open__open to closing~open 

output TS.TDISind 
output PDU.transfeLDC 

where the from or to lists contain first a state from the AP 
and next another state from the Map machines with the 
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names separated with ' ' to have syntactically correct 
Estelle state names. 

The combined transition is furthermore processed in 
Step 1 to be combined with the transition in Figure 3: 

when PDU.transfer__DC 
from open to closing 

output NS.N DATAreq__DC 

resulting in the combined transition: 

when NS.NDATAind_DR 
from open open to closing_closing 

output TS.TDISind 
output NS.N DATAreq_DC. 

One of the transitions processed in Step 2 is: 

when NS.NConnectind 
from closed to open 

output NS.NConnectresp 

of Figure 3. This transition generates six transitions 
corresponding to six states of the AP module. In Step 3 
only the transition: 

when NS.NConnectind 
from closed_closed to closed__open 

output NS.NConnectresp 

is kept since closed__closed is the only possible state pair. 
Since there are no errors detected we represent the 

procl'uct machine in graphical form in Figure 5. 

Comparison with full reachability analysis 

Limited reachability analysis can be seen as a reachability 
analysis technique in which transitions taking input from 
the internal channel(s) have higher priority of consider- 
ation. Since the queues are eliminated from the global 
state, it is not possible to consider parallel progress of the 
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Figure 5. Combined FSM TP 

component modules with limited reachability analysis. A 
consequence of this is that the resulting combined 
machine represents a part of the overall behaviour of the 
system. 

An example case will be presented in which the 
combined machine does not represent the complete 
behaviour. For example, in Figure I, the AP can receive an 
input from TS and the Map can receive another input from 
NS at the same time while this situation is not permitted in 
Figure 2. It seems that the only behaviour that is missing in 
the combined machine of Figure 5 is the call collision 
case, i.e., a connection establishment request arriving at 
the same time at both service boundaries. 

Reduced reachability analysis can also handle collision 
cases since queues of equal length are considered as part 
of the global state. So far, it can only be applied to two- 
process communication while limited reachability analysis 
can consider any number of machines. 

Use of limited reachability analysis for 
embedded systems 

Embedded systems can be validated using limited 
reachability analysis. Each subsystem is assumed to be 
modelled with FSMs which makes our analysis technique 
applicable. In the next section, it will be shown that a 
similar analysis is possible even when the specification 
technique is based on an extended finite-state machine 
model. 

Limited teachability analysis first looks for any errors in 
the embedded system and then obtains a product 
machine. The product machine can be used in test 
sequence generation since only external channels are of 
interest for testers. The product machine could also be 
used in further verification of layered systems. 

Since limited reachability analysis cannot handle 
collision cases, the product machine does not fully 
represent the embedded system. Therefore, collision 
cases should be handled separately when the product 
machine is used, i.e. test sequence generation should 
consider making a test for call collision. 

LIMITED REACHABILITY FOR EFSM 

In this section, the limited reachability analysis is extended 
to apply to the specifications written in an extended 
finite-state machine model (EFSM). This model first 
introduced in Reference 2 specifies a system using finite- 
state machines to represent major state changes with 
each transition of the system and context variables to 
represent actions attached to each transition. There exist 
two languages which are based on EFSM: Specification 
and Description Language (SDL) of CCITT 23 and Estelle of 
ISO 12. 

In general, the specifications in the EFSM model may 
contain: 

• major state lists or sets in FROM clauses, 
• local procedures and functions which can be called 

anywhere from the transitions (PROVIDED clauses or 
the actions), 

• statements changing the control of execution such as 
IF and CASE or loop statements (such as WHILE and 
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FOR) which can be included in the actions and/or in 
local procedures/functions, 

• statements for dynamic module creation/release e.g., 
connect/disconnect and attach/detach clauses in 
Estelle, 

• multiple modules with channels interconnecting them 
for inter-module communication. These channels are 
double queues in Estelle and single queues in SDL. 

Symbolic execution 

Symbolic execution is a technique in which a program is 
executed over symbols rather than actual values 1°. It has 
been used to statically analyse sequential programs as 
well as in automated test data selection. The result is the 
output in symbolic form along with path predicates of the 
path that generates this output• 

Symbolic execution can also be used to dynamically 
analyse the program behaviour for the verification 
purposes 9. It has been used for protocol verification in 
Reference 7, in which a proof tree is built by symbolically 
executing various processes specified as sequential 
programs. The proof is completed with respect to the 
assertions added to various points in the programs. 

In order to apply the results of the previous section to 
the modular specifications in the EFSM model, it is 
desirable to have the specification in a form that clearly 
identifies the execution paths that generate outputs• It 
will be shown that it is possible to transform (using a form 
of static symbolic execution) a given specification into a 
normal form where transitions contain single paths• Such a 
specification is called a normal form specification 
containing normal form transitions (NFT) 19' 22. 

The process of obtaining a normal form specification is 
performed by a set of basic transformations which are 
explained below• The example specification used is the 
simplified Class 2 transport specification in Reference 4. 
This specification written in Estelle is structured in two 
modules called AP (Abstract Protocol) and Map (Mapping). 
FSM representation of the AP module is given in Figure 4. 
The FSM representation of the Map machine has a single 
state (open), but as far as symbolic execution is concerned 
it is more complex than the AP module due to the use of 
several for and while loops• This specification will be 
referred to in the following as TP2 specification. 

Basic transformations can be automated 1 and may  
detect various syntactic and semantic errors in the 
specification since syntactic and semantic checks must be 
done to ensure a correct specification. The resulting 
normal form specification facilitates test sequence 
generation 21. It will be shown later in this section that the 
same technique can be used to analyse modular 
specifications• 

Basic transformations 

Major state lists/sets in FROM clauses such as: 

[AKWAIT, OPEN, OPEN_WFEA] 

are used to specify multiple initial states for transitions in 
the EFSM. Therefore these lists/sets can easily be 
eliminated by generating one N FT corresponding to each 
possible state value (state values of AKWAIT, OPEN and 
OPEN~WFEA in the above example)• 

IF and CASE statements are removed by generating an 
NFT for each path they define. Symbolic execution 
should be applied to the assignment statements in cases 
where conditional statements occur in places other than 
the first statement and their condition is on variables 
assigned before the conditional statements in the same 
transition. Such a case occurs for example in the transition 
(extracted from the TP2 specification): 

WHEN Map.transfer 
FROM open TO same 
PROVIDED PDU.kind = AK 

var new__credit:pos_integer; 
BEGIN 

new__credit:= credit~value 
+ expected_send__sequence - -  TSseq; 
if new__credit > = S_credit 
then S__credit:= new__credit 
else (*error*) 

END; 

which, when symbolically executed transforms into the 
following two normal form transitions: 

WHEN Map.transfer 
from open to same 
PROVIDED PDU.kind = AK and (credit__value 
+ expected__send~equence --TSseq > = S__credit) 
1 :BEGIN 

S_credit: = credit~value 
+ expected__send_sequence - -  TSseq; 

END; 
WHEN Map.transfer 
from open to same 
PROVIDED PDU.kind = AK and (credit~value 
+ expected_send_sequence - -  TSseq < S_credit) 
2:BEGIN 
(*error*) 
END; 

The loop statements are eliminated by repeating the 
body of the loop for even/index variable value. As an 
example, the FOR statement: 

for kind := CR to AK do PDU__buffer[kind]. 
is last PDU:=false; 

generates, with the enumeration of all possible values for 
the variable Kind: 

PDU__buffer [CR] :is last~PDU: =false; 
PDU_buffer[CC].is_last__PDU: = false; 

PDU__buffer [AK].is last~PDU: =false; 

In cases where exhaustive enumeration is~ not possible, a 
limited number (usually three) executions of the loop 
body is considered. For example, the statement: 

ref := 1; 
while ref in active__refs do ref := ref + 1; 

where active__refs is of type set of integers, could be 
transformed to: 

ref := 1; for active__refs = ¢ 
ref := 2; for active r e f s= { l }  
ref := 3; for active__refs = [1, 2}. 

Local procedure/function calls are eliminated by 
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symbolically executing the local procedure/function 
body. Local variables of the procedures/functions are 
made global. More details on the treatment of parameters 
in procedure/function call elimination can be found in 
Reference 1. 

The basic transformations described have been 
implemented on a workstation. The resulting system 
takes an Estelle specification as input, does lexical and 
semantic analysis on the specification. Only the correct 
specifications are subjected to the transformations. The 
transformations part of the system has been implemented 
in Prolog 16. 

Analysing modular specifications in EFSM 

Dynamic behaviour of different modules of a specification 
in EFSM can be analysed using limited reachability 
analysis explained above. The analysis looks for possible 
problems such as deadlocks, unspecified receptions, 
blocking receptions, tempo-blockings, etc. It is assumed 
that the specification is transformed into a normal form. 
The same steps are applied to the N FTs as in the algorithm 
given in the Appendix to find the combined transitions. 

Modified algorithm 

In Step 1, the spontaneous NFTs and the NFTs that 
consume input from external channels are considered. If 
any of these NFTs produce an output to the internal 
channel (called combiner NFT) it is combined with the 
NFT which consumes this output (called combinee NFT). 
Combining two NFTs is done as follows. 

First the combinee NFT is processed by symbolic 
replacements for parameter values from the output 
statement of the combiner NFT in the PROVIDED clause 
and possibly in the action. Then the combined NFT is 
formed from the modified combinee NFT and the 
combiner NFT. 

FROM and TO clauses are processed as in the 
algorithm of the Appendix. The PROVIDED clause of the 
combinee NFT is added in conjunction to the PROVIDED 
clause of the combiner NFT. The action of the combinee 
NFT replaces the output statement in the action part of 
the combiner NFT. 

The processing in Steps 2 and 3 is essentially the same 
as in the algorithm of the Appendix with N FT combination 
as explained above. Since the combined transitions 
access to the context variables of the individual modules, 
these variables are made global to the combined module. 

This modified algorithm has been implemented on a 
workstation. The program takes a transformed specifi- 
cation containing two interconnecting modules and 
obtains an output specification with these modules 
combined. It is also written in Prolog 16. The resulting 
system is being used as part of a test generation system 
based a methodology which takes single module specifi- 
cations as input 2°. 

Example 

As an example, the TP2 specification is considered, and it 
is shown how the modified algorithm applies to it. 
Consider the following transition of the AP module: 

when TS.TCONreq 
from closed to w a i t f o L C C  
begin 

options:= proposed_options; 
output Map.transfer(CR~PD U (to T__address, 
options, R__credit)); 

end; 

where C L P D U  is a local function defined as: 

function CLPDU(to_adr :TAddrType,  o:OptType, 
c:Seq N umType):TPDUandCtrlln f; 
var PDU: TPDUandCtrllnf; 
begin with PDU do 

begin kind := CR; 
peer__address := to__adr; 
options i n d : = o ;  
credit__value : = c; 
order := first 

end; 
CR__PDU := PDU; 
end; 

After the CR__PDU is symbolically replaced: 

when TS.TCONreq 
from closed to w a i t ~ f o L C C  
begin 

options := proposed__options; 
PDU.kind := CR; 
PDU.peeLaddress := to_T_address;  
PDU.options ind := options; 
PDU.credit value := R__credit; 
PDU.order := first; 
output map.transfer(PDU); 

end; 

The output statement is removed in Step 1 by combining 
it with the transition of the Map module: 

when AP.transfer 
begin 

TC[T__suf, EP__id]. PDU__buffer[PDU.CR] := PDU; 
TC[T suf,EP id]. PDU buffer[PDU.CR] 
.full := true; 

end; 

yielding: 

when TS.TCONreq 
from (closed, idle) to ( w a i t f o r ~ C C ,  idle) 
begin 

options : = proposed_options; 
PDU.kind := CR; 
. . .  (*same as above*) 
TC[T_suf,EP_id]. PDU__buffer[PDU.CR] := PDU; 
TC[T suf,EP id].PDU__buffer[PDU.CR] 
.full := true; 

end; 

After the modules are combined, control and data flow 
graphs of the resulting specification can be obtained if 
there are no errors detected. For our example protocol 
specification, the FSM model of the product ~EFSM (after 
errors are corrected, see below) is similar to Figure 4, since 
the map module has a single major state, therefore this 
graph is not shown to save space. 
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Errors resulting from intermodule communication 

Limited teachability analysis gives rise to detecting various 
problems in intermodule communication, thereby in the 
design of entity (such as the protocol/service) specifi- 
cations. These problems can be classified as deadlocks, 
unspecified receptions and channel overflows. These 
problems are analysed by giving examples from an earlier 
version of the TP2 specification. 

Deadlock arises when the channel is empty and either 
of the modules is unable to progress due to major and 
context state values, i.e. none of the transitions can be 
fired. In TP2 such a deadlock is detected when the AP 
module goes to 'closing' state after receiving a TDISreq 
from TS channel in 'wai t~for_TCONresp'  state and 
transfers a DR PDU to the 'map' module (see Figure 4) and 
the 'is last~PDU' parameter is mistakenly set to  false. 
The 'map' module in turn sends a NDATAreq to the NS 
channel instead of a 'terminated' output to the internal 
channel (since 'is_last__PDU' is set to false). The result is 
a deadlock since the AP module will indefinitely wait for 
'terminated' signal to arrive in the internal channel. 

Unspecified reception occurs when one of the modules 
places an input to the channel for which the other channel 
has no internal transition to consume. This case can also 
occur for external channels, i.e. an input primitive arriving 
in an unexpected state is usually left unspecified. On the 
other hand, there are transitions that must exist in the 
specification. If they are somehow forgotten, the result is 
unspecified receptions. In TP2, limited reachability 
detected unspecified reception errors in two cases: The 
AP module in 'wait~for__CC' state goes to 'waiL__for_DC' 
upon reception of TDISreq at the TS channel and 
produces a DR PDU for 'map' module (see Figure 4) and 
sets (mistakenly) the 'is_last__PDU' parameter to true. 
This makes the 'map' module output a NDATAreq to the 
NS channel and a 'terminated' to the internal channel. 
The 'terminated' signal in 'wait__for__DC' state is an 
unspecified reception for the AP module. The second 
case occurs when the AP module goes to 'wait__for__DC' 
state from 'open' state with TDISreq input at TS channel. 

In case one of the modules can repeatedly fire a 
transition which outputs an interaction to an external or 
internal channel, there is channel overflow. Channel 
overflows usually result from spontaneous transitions that 
generate an output. These transitions usually reflect an 
abstraction level in which the specifier is trying to capture 
various possible implementation behaviours. An example 
is the acknowledgement policy. The formal specification 
accepts all possible policies by letting the protocol entity 
to output an acknowledgement any time. A channel 
overflow related to external channels occurs in the TP2 
specification where the AP module is allowed to send 
READY message on the TS channel indefinitely. Another 
channel overflow related to internal channels exists 
where the AP module sends AK PDU to the internal 
channel indefinitely. In limited reachability analysis this 
transition is combined with the corresponding reception 
transition in the 'map' module which in turn enables a 
transition that outputs a NDATAreq to the NS channel. 
These interactions produce, in the product machine, a 
spontaneous transition that outputs a NDATAreq to the 
NS channel. Thus the limited reachability analysis converts 
the channel overflows related to internal channels 
channel overflows related to the external channels. 

The above discussion abstracts out the parallel 

behaviour description in Estelle by way of systemprocess 
and systemactivity properties of the modules. This aspect 
of Estelle is discussed in References 8 and 11. 

CONCLUSIONS 

A method was developed for self-consistency analysis of 
complex protocol/service specifications. Static validation 
based on symbolic execution reveals syntactic and some 
semantic errors while dynamic analysis based on reach- 
ability analysis reveals problems in inter-module com- 
munication such as deadlocks, channel overflows, 
unspecified receptions, etc. while the translator of the 
specification language could only detect static errors. The 
specification is first transformed into a form called normal 
form specification by the basic transformations of symbolic 
execution. Then modules are combined by a limited 
reachability analysis in order to eliminate internal 
communication and obtain a single module specification. 
The resulting single module specification can be used for 
test sequence generation as well as for further validations 
of complicated system specifications. 

There is a need for developing a tool that will assist the 
specification developers by automatically doing most of 
the analysis described in this paper. This need becomes 
more evident in coping with volumunious specifications. 
Parts of the automatic processing can also be incorporated 
in the translators for the specification language. It would 
also be interesting to investigate if a similar technique 
would apply for self-consistency analysis of Lotos 
specifications. 

The paper assumes the existence of queues of internal 
interactions that may contain a maximum of one message. 
Further theoretical investigations are required to extend 
our technique to the case where internal queues may 
have an arbitrarily large number of messages. 
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APPENDIX: AN ALGORITHM FOR LIMITED 
R EACHABI LITY ANALYSIS 

I npuL  Component FSMs, FSMI and FSM2; EIPL (external 
interaction point list), IIPL (internal interaction point list). 
Assume the following functions: input (Ti) returns null for 
a spontaneous Ti otherwise to the result returned we 
apply the functions ip and int to get the interaction point 
and the interaction, respectively; output (Ti) returns the 
next output to which the functions ip and int apply the 
same way as in input (Ti). The output function returns null 
when there is no more output left. Similarly, the functions 
to (Ti) and from (Ti) return the state values. 
O u t p u L  Combined FSM, FSM12, or list of errors. 

STEP 1. 
For each transition Ti in FSM1 do 
If (input(T/) = null) or (ip(input(Ti)) in EIPL) then 
repeat 

out1 = output(T/); 
i foutl {~null then 

if ip(out l )  in IIPL then 
begin 

for each transition Tj in FSM2 do 
if ip(input(Tj)) = ip(out l )  then 
begin 
create a combined transition from Ti and Tj; 
tag the combined transition if T i has any 
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output to an internal interaction point 
end 

end 
until out l  = null; 
For each transition Ti in FSM2 do 
. . .  similar processing as above . . .  
For each tagged combined transition Tij do 

repeat 
out l  = output(T/j); 
i foutl ~}null then 

if ip(out l )  in IIPL then 
begin 

for each transition Tk in FSMI or FSM2 do 
if (ip(input(Tk)) = ip(outl))  and (to(T/j) = 
from (Tk)) then 
begin 

to(T/j) := to(Tk); 
write output(Tk) to the output list of Tij 

end 
end 
until out1 = null; 

STEP 2. 
For each transition Ti in FSM1 that has no input or 
output with any internal interaction points do 

for state1 in States(FSM2) do 
begin 

add Ti to the list of combined transitions to 
be processed in Step 3 by pairing its from and 
to states with state 1 

end 
For each transition Tk in FSM2 that has no input 
or output with any internal interaction points do 
. . .  same as above . . .  

STEP 3. 
StateList := f; 
For each combined transition Tij do 
begin 

StateList := StateList + from(T/j); 
StateList := StateList + to(T/j) 

end; 
For each transition Ti output from Step 2 do 

if the pair (from(T/), to (Ti)O in StateList then 
output Ti to the list of combined transitions 

else 
eliminate Ti; 

End of the Algorithm. 
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